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A B S T R A C T

In order to understand the lower bound of achievable measurement uncertainties, the Cramér-Rao inequality is
known to be an utmost useful tool. However, the calculation of the Cramér-Rao bound requires a known
probability density function that describes the occurring stochastic process. For this reason, the Cramér-Rao
bound is applied for determining the lower limit of the measurement uncertainty due to random errors.
According to the international guide to the expression of uncertainty in measurement (GUM), unknown sys-
tematic errors shall be treated as random errors. This approach is adopted here to enhance the applicability of
the Cramér-Rao bound for unknown systematic errors. As a key result, the concept of Fisher information and the
Cramér-Rao bound is shown to be applicable also to unknown systematic errors, which is demonstrated for
several examples. An unknown offset, an unknown linear drift and successive unknown linear drifts are in-
vestigated in detail as systematic errors. Each derived corresponding Fisher information shows a characteristic
behavior with respect to the measurement time. In contrast to random errors with a constant variance, the Fisher
information can decrease for unknown systematic errors and, thus, the Cramér-Rao bound can increase with an
increasing measurement time. For the typically existing case of simultaneously occurring random and unknown
systematic errors, an optimal measurement time exists for which the achievable measurement uncertainty be-
comes minimal. In summary, the examples demonstrate how to determine the Fisher information and the
Cramér-Rao bound for unknown systematic errors.

1. Introduction

In metrology, the identification and understanding of measurement
uncertainty limits is an important task, e.g., for optimizing the current
setup of a measurement system or for designing an improved mea-
surement system. For this purpose, the Cramér-Rao inequality [1,2] is
well-known as a valuable tool and has been applied successfully for
many different investigations, e.g., for ultrasound displacement sensors
[3], sonar and radar systems [4], optical flow velocity measurements
[5–10] or optical distance and shape measurements [11–13]. The
Cramér-Rao inequality allows to determine the minimal achievable
variance for unbiased and biased estimations [14,15]. This variance
limit is known as the Cramér-Rao bound. Considering a single unknown
quantity θ, the Cramér-Rao bound for every unbiased estimator ̂θ is the
reciprocal of the Fisher information Iθ, i.e., [16–18]

I
̂ ⩾θVar( ) 1 .

θ (1)

Hence, the Fisher information is the crucial parameter for under-
standing the minimal achievable measurement uncertainty.

The concept of Fisher information is based on a (known) probability
density function referred to as the likelihood function of the signal to be

evaluated. For this reason, the concept is applicable for random mea-
surement errors. Many studies considered enhancements, e.g., re-
garding the estimation of multiple unknown quantities with constraints
[19–21], the estimation of complex parameters [22] and the case of a
singular Fisher information matrix [23–25]. However, the explicit
treatment of systematic errors such as an unknown offset or linear drift
in the context of the Fisher information is not yet clear.

Especially for an unknown offset, one approach might be to model
the unknown systematic error as an additional unknown quantity with
constraints. An alternative approach that is easily applicable for all
kinds of systematic errors directly follows from the international “Guide
to the expression of uncertainty in measurement” (GUM) [26,27]. The
GUM suggests to correct known systematic errors and to treat re-
maining unknown systematic errors the same way as random errors
after assigning an appropriate probability density function using the
principle of maximum entropy [28]. According to this suggestion, the
unknown systematic errors can also be treated within the framework of
the Fisher information, which remains to be investigated.

At first sight, information is assumed to increase with an increasing
measurement time, because once acquired the information cannot dis-
appear. On the other hand, it is well-known that the variance of the
measurement decreases with the measurement time in case of dominant
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random errors but can increase in case of dominant systematic errors.
One prominent example for such a behavior of the measurement un-
certainty versus the measurement time is the time measurement or the
frequency stability of clocks, e.g., due to temperature drifts [29]. Con-
sequently, unknown systematic errors are assumed to cause a decrease in
information (destruction of the information) with an increasing mea-
surement time. However, the attribution of a specific information de-
crease to a certain kind of systematic error and vice versa is not yet clear.

The aim of the article is to demonstrate that the Fisher information
and, thus, the Cramér-Rao bound of a measurand can be determined for
unknown systematic errors. After presenting the state-of-the-art case of
a random error namely additive Gaussian noise in Section 2, the
treatment of systematic errors is discussed in Section 3 considering
three different examples. For each example, the corresponding char-
acteristic behavior of the Fisher information and the Cramér-Rao bound
with respect to the measurement time is derived. Finally, an example
for the superposition of random and systematic errors is discussed in
Section 4, which occurs in real measurements in general.

Throughout the article, the case of a single unknown constant is
considered. This case applies frequently and is easy to calculate, which
helps focusing on the key aspects of the article. For the same reason, the
disturbances are always modeled by normal distributions, although the
calculations can also be performed for other probability density func-
tions. Since the subsequent findings are not restricted to a specific
measurement quantity, the unknown constant is normalized with re-
spect to its unit.

2. Random errors

As a reference for the subsequent investigations, the case of an
unknown constant θ superposed by additive Gaussian noise with the
variance σ2 is considered. The acquired signal x thus reads

N= + ∼x θ w w σ, with (0, ).2 (2)

As a result, the likelihood function p x θ( , ) is a normal distribution
N θ σ( , )2 with the mean value θ and the variance σ2. The first derivative
∂

∂
p x θ

θ
ln ( , ) of the log-likelihood function is named score function. Using the
second derivative of the log-likelihood function, the Fisher information
is [17, p.111]

I ⎜ ⎟⎜ ⎟= − ⎛

⎝
⎛
⎝

∂
∂

⎞
⎠

⎞

⎠
=

p x θ
θ σ

E
ln ( , ) 1

θ

2

2

2

2
(3)

and, according to Eq. (1), σ2 results as the Cramér-Rao bound of θ.
Note that the noise variance is often unknown, which means that

two unknown parameters exist and the calculated Fisher information
becomes one of the four elements of the Fisher information matrix.
However, the same Cramér-Rao bound of θ results, which follows from
the respective element of the main diagonal of the inverse Fisher in-
formation matrix [17, p.112]. For this reason, the consideration of θ as
the only unknown parameter is a convenient simplification.

For white noise with the constant noise power spectral density S, the
noise variance depends on the bandwidth of the measurement or on the
measurement time T, respectively, according to the relation =σ S T/2 .
Inserting this relation into Eq. (3), the Fisher information becomes

I =
S

T1 · .θ (4)

As a result, the Fisher information is directly proportional to the
measurement time.

For a measurement, which starts at the time =t 0, the calculated
characteristic behavior of the Fisher information over the time t is de-
picted in Fig. 1 for the white noise condition. The corresponding tem-
poral behavior of the Cramér-Rao bound is shown in addition resulting
from the reciprocal of the Fisher information. Before the measurement
starts, the information is zero and the measurement uncertainty is

therefore infinite (no previous knowledge). The longer the measure-
ment time the more information is obtained and, thus, the lower the
Cramér-Rao bound. For → ∞t , the Fisher information converges to
infinity and the Cramér-Rao bound converges to zero.

For colored noise, the increase of the Fisher information can be
smaller or larger than for the white noise condition, and the slope of the
Fisher information can vary between zero and plus infinity. For in-
stance, the initial slope of the Fisher information is larger/smaller for a
noise power spectral density with a high-pass/low-pass characteristic
than for white noise.

3. Systematic errors

The definition of the Fisher information contains so-called reg-
ularity conditions with respect to the likelihood function [17, p.111].
The first regularity condition is the existence of the score function, i.e.,
the first derivative of the log-likelihood function. The second condition
is that the order of the integration with respect to x and the differ-
entiation with respect to θ can be interchanged in the expression

∫∂
∂ p x θ x( , )dθ . The likelihood function used in Section 2 fulfills these
requirements. When the regularity conditions hold, the mean of the
score function ∂

∂
p x θ

θ
ln ( , ) is zero, i.e., =∂

∂( )E 0p x θ
θ

ln ( , ) [17, p.112].
For a known systematic measurement error, the likelihood function

p x θ( , ) is a Dirac distribution that is located at the value of the error.

Since ≠∂
∂( )E 0p x θ

θ
ln ( , ) , the regularity conditions are not fulfilled for

known systematic errors. As a result, the concept of Fisher information is
not applicable to known systematic errors. Fortunately this is mean-
ingless, because the international guide to the expression of uncertainty
in measurement demands the correction of known systematic errors.

In order to determine the Fisher information for an unknown sys-
tematic error, an appropriate probability density function is required,
which describes the error behavior and simultaneously fulfills the reg-
ularity conditions. The subsequently applied normal distributions with
zero mean and a variance that is independent of the unknown quantity
fulfill the regularity conditions [17]. Furthermore, the modeling of a
systematic error as a random error is in perfect agreement with the in-
ternational guide to the expression of uncertainty in measurement. Three
frequent kinds of systematic errors are discussed in the following sub-
sections.

3.1. Offset

Measurements often contain an unknown offset c0, i.e., the mea-
sured value deviates from the true value and the deviation does not
vary. As a result, the acquired signal for measuring the unknown con-
stant θ reads

= +x θ c0 (5)

independent of the measurement time. The origin of the offset can be,
e.g., an inaccurate calibration or the aging of certain components of the
measurement system.

Since the offset is an unknown systematic error, it is modeled as a
purely random error with zero mean. Note that the offset is random
when the measurement starts, but it does not vary with time during the
measurement. Hence, the offset c0 is not a random variable, but the
realization of a random variable. Here, the random behavior is de-
scribed by a normal distribution N σ(0, )0

2 with zero mean and the
constant variance σ0

2 as the probability density function. As a result, the
Fisher information that follows from Eq. (3) is independent of the
measurement time and amounts to

I =
σ
1 .θ
0
2 (6)

Consequently, the Cramér-Rao lower bound is also independent of
the measurement time.
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The temporal behavior of the Fisher information for a measurement
starting at =t 0 is depicted in Fig. 2 together with the corresponding
Cramér-Rao bound, i.e., the reciprocal of the Fisher information. With
the start of the measurement, the Fisher information instantly jumps to
the value

σ
1

0
2 and remains there. The qualitative behavior of the Cramér-

Rao bound is similar. However it jumps from plus infinity to σ0
2 and

remains there despite an increasing measurement time.

3.2. Linear drift

If an integration is part of the measurement, an unknown offset at
the integrator input signal leads to a linearly increasing error of the
integrator output. This is one example for a linear drift, which applies
for instance when estimating the distance to an object by integrating
the detected object velocity with respect to the time. A similar example
is the time measurement by counting clock pulses, i. e., the occurrence
of equally spaced events. Another reason of a linear drift could be an
existing cross-sensitivity and the variation of the respective influence
quantity. Note that systematic errors occur not necessarily due to cross-
sensitivities. A systematic error can also result from a real temporal
variation of the measurand during the measurement time, while the
measurement aims to measure a constant quantity only.

The acquired signal as a function of the measurement time T reads
for an unknown constant θ (i.e., the true value of the integrator input is
zero) superposed by a linearly increasing error with an unknown con-
stant slope c1

= +x T θ c T( ) · .1 (7)

Similar to the previous example of the offset, the parameter c1 is
now treated as the realization of a random variable. For convenience,
this random variable is assumed to follow a normal distribution
N σ(0, )1

2 with zero mean and the variance σ1
2. As a result, the value of

c T1 has the variance σ T1
2 2 and, thus, the Fisher information reads ac-

cording to Eq. (3)

I =
σ T
1 · 1 .θ
1
2 2 (8)

Hence, the Fisher information is indirectly proportional to the
square of the measurement time. In order words, the Fisher information
decreases with an increasing measurement time when considering an
unknown linear drift. This finding proves the hypothesis that unknown
systematic errors can lead to a decreasing Fisher information.

In order to illustrate the finding, the calculated temporal behavior of
the Fisher information is depicted in Fig. 3 together with the corre-
sponding Cramér-Rao bound, i.e., the reciprocal of the Fisher in-
formation. At the measurement start at =t 0, the Fisher information
instantly jumps from zero to plus infinity and then converges to zero for

→ ∞t . The Cramér-Rao bound is zero at =t 0 and increases with the
square of the measurement time. As a result, the lower the measure-
ment time the lower the Cramér-Rao bound.

3.3. Successive drifts or the adding of successive errors

A different temporal behavior of the Fisher information results from
a variant of the previous example. If the error of the integrator input
signal changes after a certain duration, a sequence of unknown linear
drifts occurs. For instance, this condition applies for a numerical in-
tegration (or summation) of a discrete-time signal, where each sample
contains a different error. The respective errors of the integrator output
add to each other with each integration (or summation) step.

The discrete signal for an unknown constant quantity θ then reads at
the n-th time step
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5 Fig. 1. (a) Fisher information and (b) Cramér-Rao bound versus
time for the measurement of an unknown constant quantity θ
disturbed by additive white Gaussian noise. The measurement
starts at =t 0, the arbitrary unit of θ is u, and the noise power
spectral density amounts to = 1 u /Hz2 .
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2 Fig. 2. (a) Fisher information and (b) Cramér-Rao bound
versus time for the measurement of an unknown constant
quantity θ superposed by an unknown offset. The measure-
ment starts at =t 0, the arbitrary unit of θ is u, and =σ 1 u0 .
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∑= + ∈
=

x n θ c τ n[ ] , ,
i

n

i
1 (9)

where τ is the sampling period or the step size of the discrete integra-
tion. Treating the unknown slopes ci of the successive linear drifts as
uncorrelated realizations of a common random variable with the
normal distributionN ∼σ(0, )1

2 , the variance of each error c τi amounts to
∼σ τ1

2 2. Since the variance of the sum of the uncorrelated errors equals the
sum of all variances, the variance of the total error is =∼ ∼nσ τ σ τT1

2 2
1
2 with

the measurement time =T n τ· . Furthermore, the sum of normally dis-
tributed errors follows a normal distribution as well. Hence, inserting
the variance ∼σ τT1

2 into Eq. (3) finally gives the Fisher information

I = ∼σ τ T
1 · 1 .θ
1
2 (10)

The Fisher information is indirectly proportional to the measure-
ment time, which is a further example of an unknown systematic error
that results in a decreasing Fisher information.

For the sake of completeness, the temporal behavior of the Fisher
information is depicted in Fig. 4 together with the corresponding
Cramér-Rao bound for a measurement start at =t 0. Aside from the
different relations with respect to the measurement time, the general
tendencies of the curves are the same as in Fig. 3.

4. Superposed random and unknown systematic errors

In order to demonstrate the more realistic case of superposed random
and unknown systematic errors, the combination of additive white
Gaussian, an unknown offset and an unknown linear drift is considered:

= + + +x T θ w c c T( ) · .0 1 (11)

Since the three errors are uncorrelated and obey a normal dis-
tribution here (cf. Sections 2 and 3), the sum of the three errors obeys a

normal distribution as well. The mean of the summed error is zero and
the variance amounts to + +S T σ σ T/ 0

2
1
2 2. According to Eq. (3), the

Fisher information as a function of the measurement time T thus takes
the form

I =
+ +σ σ T

1 .θ S
T 0

2
1
2 2

(12)

Assuming the noise power spectral density =S 0.5 u /Hz2 , the offset
standard deviation =σ 1 u0 and the drift standard deviation =σ 0.01 u/s1 ,
the calculated temporal behavior of the Fisher information and the
Cramér-Rao bound is shown in Fig. 5. The red crosses indicate the var-
iance of the measured values obtained from a Monte-Carlo simulation.
The simulation results agree with the analytical calculation of the Cramér-
Rao bound, which verifies the calculated curve. The dashed lines re-
present the results for each single error. As a result, the additive white
Gaussian noise dominates for a short measurement time, whereas the
offset and later the drift mainly limit the Fisher information and the
Cramér-Rao bound, respectively, with an increasing measurement time.
Regarding the Fisher information, each result from a single error re-
presents an upper bound. In contrast to this, each Cramér-Rao bound from
a single error is a lower bound of the total Cramér-Rao bound. Note that a
maximum occurs for the Fisher information, which leads to a minimum of
the Cramér-Rao bound. As a result, the measurement uncertainty limit is
minimal for an appropriate choice of the measurement time.

5. Conclusions

The concept of Fisher information and the Cramér-Rao bound is not
only applicable to random errors but also unknown systematic errors.
This insight follows from the international guide to the expression of
uncertainty in measurement (GUM), where the behavior of the un-
known systematic error shall be described by a random process with an
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10 Fig. 3. (a) Fisher information and (b) Cramér-Rao bound
versus time for the measurement of an unknown constant
quantity θ disturbed by an unknown linear drift. The mea-
surement starts at =t 0, the arbitrary unit of θ is u, and

=σ 1 u/s1 .
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1 Fig. 4. (a) Fisher information and (b) Cramér-Rao bound
versus time for the measurement of an unknown constant
quantity θ disturbed by successive unknown linear drifts. The
measurement starts at =t 0, the arbitrary unit of θ is u,

=σ 1 u/s1 and =τ 0.1 s.
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appropriate probability density function.
In the present article, the behavior of the Fisher information and the

Cramér-Rao bound with an increasing measurement time were derived
for an unknown constant measurand regarding a random error (additive
Gaussian noise) and three unknown systematic errors (offset, linear drift,
successive linear drifts). While a random error is usually described by a
stationary process, the unknown systematic errors cover the broader
class of non-stationary processes. As a result, the increase of the Fisher
information with respect to the measurement time is always positive or
zero for additive Gaussian noise but is negative or zero for the considered
unknown systematic errors. In particular, the Fisher information as a
function of the measurement time is shown to be constant for an offset, to
be indirectly proportional to the square of the measurement time for a
linear drift and to be indirectly proportional to the measurement time for
successive linear drifts. These findings are summarized in Table 1. Note
that, although unknown systematic errors can lead to a decrease of the
Fisher information, the Fisher information itself is always positive or zero
as expected. Hence, the slope of the Fisher information with respect to
the time is in general between minus and plus infinity, whereas the
Fisher information is between zero and plus infinity.

According to the Cramér-Rao bound, which is the reciprocal of the
derived Fisher information, a lower bound of the achievable measure-
ment uncertainty is obtained for the unknown systematic errors. In
contrast to added noise with a constant variance, the Cramér-Rao bounds
resulting from unknown systematic errors increase or stay constant with
an increasing measurement time. For this reason, an optimal measure-
ment time can exist for which the Cramér-Rao bound is minimal, if
random and unknown systematic errors occur simultaneously.

The investigations illustrate the significance of the measurement
time as a crucial parameter of measurements. As a conclusion, the

measurement uncertainty should always be noted together with the
measurement time.

References

[1] C.R. Rao, Information and the accuracy attainable in the estimation of statistical
parameters, Bull. Calcutta Math. Soc. 37 (1945) 81–91.

[2] H. Cramér, Mathematical Methods of Statistics, Princeton University Press,
Princeton, 1946.

[3] W. Walker, G. Trahey, A fundamental limit on delay estimation using partially
correlated speckle signals, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 42 (2)
(1995) 301–308.

[4] A. Dogandžić, A. Nehorai, Cramér-Rao bounds for estimating range, velocity, and
direction with an active array, IEEE Trans. Signal Process. 49 (6) (2001)
1122–1137.

[5] M.P. Wernet, A. Pline, Particle displacement tracking technique and Cramer-Rao
lower bound error in centroid estimates from CCD imagery, Exp. Fluids 15 (4)
(1993) 295–307.

[6] J. Westerweel, Theoretical analysis of the measurement precision in particle image
velocimetry, Exp. Fluids [Suppl.] 29 (7) (2000) S3–S12.

[7] A. Høst-Madson, K. Anderson, Lower bounds for estimation of frequency and phase
of Doppler signals, Meas. Sci. Technol. 6 (6) (1995) 637–652.

[8] J.W. Czarske, Statistical frequency measuring error of the quadrature demodulation
technique for noisy single-tone pulse signals, Meas. Sci. Technol. 12 (5) (2001)
597–614.

[9] A. Fischer, J. Czarske, Signal processing efficiency of Doppler global velocimetry
with laser frequency modulation, Optik – Int. J. Light Electron Opt. 121 (20) (2009)
1891–1899.

[10] A. Fischer, T. Pfister, J. Czarske, Derivation and comparison of fundamental un-
certainty limits for laser-two-focus velocimetry, laser Doppler anemometry and
Doppler global velocimetry, Measurement 43 (10) (2010) 1556–1574.

[11] T. Pfister, A. Fischer, J. Czarske, Cramér-Rao lower bound of laser Doppler mea-
surements at moving rough surfaces, Meas. Sci. Technol. 22 (5) (2011) 055301
(15pp).

[12] P. Pavliček, O. Hýbl, White-light interferometry on rough surfaces – measurement
uncertainty caused by noise, Appl. Opt. 51 (4) (2012) 465–473.

[13] P. Pavliček, G. Häusler, Methods for optical shape measurement and their mea-
surement uncertainty, Int. J. Optomech. 8 (4) (2014) 292–303.

[14] A. van den Bos, Parameter Estimation for Scientists and Engineers, John
Wiley & Sons, Hoboken, New Jersey, 2007.

[15] A. Fischer, J. Czarske, Measurement uncertainty limit analysis with the Cramér-Rao
bound in case of biased estimators, Measurement 54 (2014) 77–82.

[16] G. Casella, R.L. Berger, Statistical Inference, Duxbury Press, Belmont, 1990.
[17] M.J. Schervish, Theory of Statistics, Springer, Berlin, 1997.
[18] C. Arndt, Information Measures: Information and Its Description in Science and

Engineering, Springer, Berlin, 2004.
[19] J.D. Gorman, A.O. Hero, Lower bounds for parametric estimation with constraints,

IEEE Trans. Inform. Theory 26 (6) (1990) 1285–1301.
[20] T.L. Marzetta, A simple derivation of the constrained multiple parameter Cramer-

Rao bound, IEEE Trans. Signal Process. 41 (6) (1993) 2247–2249.
[21] P. Stoica, B.C. Ng, On the Cramér-Rao bound under parametric constraints, IEEE

Signal Process. Lett. 5 (7) (1998) 177–179.
[22] A.K. Jagannatham, Cramer-Rao lower bound for constrained complex parameters,

IEEE Signal Process. Lett. 11 (11) (2004) 875–878.
[23] Z. Ben-Haim, Y.C. Eldar, On the constrained Cramér-Rao bound with a singular

Fisher information matrix, IEEE Signal Process. Lett. 16 (6) (2009) 453–456.
[24] E. Song, Y. Zhu, J. Zhou, Z. You, Minimum variance in biased estimation with

singular Fisher information matrix, IEEE Trans. Signal Process. 57 (1) (2009)
376–381.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2 Fig. 5. (a) Fisher information and (b) Cramér-Rao

bound versus time for the measurement of an un-
known constant quantity θ superposed by additive
white Gaussian noise and two unknown systematic
errors (offset and linear drift). The measurement
started at =t 0. The arbitrary unit of θ is u,

= =S σ0.5 u /Hz, 1 u2 0 , =σ 0.01 u/s1 . A Monte-Carlo
simulation (red crosses) verifies the calculated
Cramér-Rao bound. (For interpretation of the refer-
ences to colour in this figure legend, the reader is re-
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Table 1
Overview of the behavior of the Fisher information Iθ with respect to the measurement
time >T 0 for the investigated errors. Note that the Cramér-Rao bound for every unbiased
estimator is I−

θ
1.

Iθ I∂
∂

θ
T

error type source

(Increase above ∝ T ) >0 Random Additive colored Gaussian noise (high-pass)
∝ T >0 Random Additive white Gaussian noise

(increase below ∝ T ) ≥ 0 Random Additive colored Gaussian noise (low-pass)
= const = 0 Systematic Offset

∝
T
1 <0 Systematic Successive linear drifts

∝
T
1
2

<0 Systematic Linear drift
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